High energy x-ray phase contrast CT using glancing-angle grating interferometers.

نویسندگان

  • A Sarapata
  • J W Stayman
  • M Finkenthal
  • J H Siewerdsen
  • F Pfeiffer
  • D Stutman
چکیده

PURPOSE The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. METHODS DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. RESULTS Using a glancing angle interferometer at high x-ray energy (∼ 45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. CONCLUSIONS DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromatici...

متن کامل

Theory of oblique and grazing incidence Talbot‑Lau interferometers and demonstration in a compact source x‑ray reflective interferometer

With the advent of Talbot-Lau interferometers for x-ray phase-contrast imaging, oblique and grazing incidence configurations are now used in the pursuit of sub-micron grating periods and high sensitivity. Here we address the question whether interferometers having oblique incident beams behave in the same way as the well-understood normal incidence ones, particularly when the grating planes are...

متن کامل

Imaging Liver Lesions Using Grating-Based Phase-Contrast Computed Tomography with Bi-Lateral Filter Post-Processing

X-ray phase-contrast imaging shows improved soft-tissue contrast compared to standard absorption-based X-ray imaging. Especially the grating-based method seems to be one promising candidate for clinical implementation due to its extendibility to standard laboratory X-ray sources. Therefore the purpose of our study was to evaluate the potential of grating-based phase-contrast computed tomography...

متن کامل

Hard-X-ray dark-field imaging using a grating interferometer.

Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early sta...

متن کامل

X-Ray Phase-Contrast CT of a Pancreatic Ductal Adenocarcinoma Mouse Model

To explore the potential of grating-based x-ray phase-contrast computed tomography (CT) for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i) high-resolution synchrotron radiation (SR) imagi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 41 2  شماره 

صفحات  -

تاریخ انتشار 2014